
Networks of recurrent events, a theory of records, and an application to finding causal signatures
in seismicity

Jörn Davidsen,1,* Peter Grassberger,1,2 and Maya Paczuski1
1Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4

2Institute for Biocomplexity and Informatics, University of Calgary, Calgary, Alberta, Canada
�Received 16 January 2007; revised manuscript received 29 May 2007; published 6 June 2008�

We propose a method to search for signs of causal structure in spatiotemporal data making minimal a priori
assumptions about the underlying dynamics. To this end, we generalize the elementary concept of recurrence
for a point process in time to recurrent events in space and time. An event is defined to be a recurrence of any
previous event if it is closer to it in space than all the intervening events. As such, each sequence of recurrences
for a given event is a record breaking process. This definition provides a strictly data driven technique to search
for structure. Defining events to be nodes, and linking each event to its recurrences, generates a network of
recurrent events. Significant deviations in statistical properties of that network compared to networks arising
from �acausal� random processes allows one to infer attributes of the causal dynamics that generate observable
correlations in the patterns. We derive analytically a number of properties for the network of recurrent events
composed by a random process in space and time. We extend the theory of records to treat not only the variable
where records happen, but also time as continuous. In this way, we construct a fully symmetric theory of
records leading to a number of results. Those analytic results are compared in detail to the properties of a
network synthesized from time series of epicenter locations for earthquakes in Southern California. Significant
disparities from the ensemble of acausal networks that can be plausibly attributed to the causal structure of
seismicity are as follows. �1� Invariance of network statistics with the time span of the events considered. �2�
The appearance of a fundamental length scale for recurrences, independent of the time span of the catalog,
which is consistent with observations of the “rupture length.” �3� Hierarchy in the distances and times of
subsequent recurrences. As expected, almost all of the statistical properties of a network constructed from a
surrogate in which the original magnitudes and locations of earthquake epicenters are randomly “shuffled” are
completely consistent with predictions from the acausal null model.
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I. INTRODUCTION

Many striking features of physical, biological or social
processes can be portrayed as patterns or clusters of localized
events. These can be flips of magnetic domains in a ferro-
magnet leading to Barkhausen noise �1,2�, traffic jams �3�,
booms and busts of markets and economies �4,5�, forest fires
�6�, the spread of infections �7� and global pandemics, ex-
tinctions of species �4,8–10�, neural spikes �11�, solar flares
�12,13�, or earthquakes �14–16�–to name a few. A generic
attribute in all these cases is that one event can trigger or
somehow induce another one to occur—or possibly numer-
ous further events. Sometimes, as in the prototype sandpile
model �17�, an accounting of causes and their effects leads to
an interpretation in terms of avalanches—where causal con-
nections between clustered events �“topplings”� are explic-
itly rationalized by the microscopic state and rules of the
dynamical system. More often than not, though, the network
of causal connections cannot be resolved from the data at
hand and remains ambiguous. Thus, one is often confronted
with inferring a plausible causal structure from clusters of
localized events without a detailed or “fundamental” knowl-
edge of the true microscopic dynamics. This remains a stub-
bornly impenetrable problem despite some progress in spe-
cial cases �see, e.g., Ref. �18�, and references therein�.

We aim to establish a general procedure of plausible in-
ference based on sequences of data in space and time, or
more generally for any temporal sequence of data. The es-
sential idea for the method of analysis discussed here is that
of a recurrence. Our definition of recurrences is a generali-
zation of “returns” for a point process to higher dimensional
data structures that evolve in time. Loosely spoken, a recur-
rence involves a pair of events which are sufficiently close to
each other to suggest a causal connection.

A. Example of contextual dependence

For illustration consider the two events: �A� first Alice
drops a banana and �B� then Bob falls down. If A and B are
sufficiently close in space and time then one can reasonably
infer that it is likely that Bob slipped on the banana and fell
down �“A caused B”�, but should these events be sufficiently
separated then A is less likely to have contributed to B’s
occurrence. For instance, Bob could have been distracted by
the banana, or fell for another reason related to A without
actually slipping directly on the banana—so the two events
may still be connected without A being exclusively the cause
of B. This secondary effect is also less likely if sufficient
time has past between the two events. Eventually Alice or
another party may pick up the banana or Bob’s fall may have
happened so far away that it would be unlikely for him to
have slipped on it.*davidsen@phas.ucalgary.ca
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As this example shows, it is not always clear what we
should mean by “sufficiently close” to infer a causal connec-
tion. One option might be to call a localized event B a recur-
rence of an earlier event A, if its spatial distance is less than
some chosen length l �19,88�. In addition to introducing a
length scale, this choice fails to admit that the plausibility of
causal connections typically becomes weaker with time—as
the example above makes plain. In addition, the likelihood
that the later event �B� may be triggered by a third interven-
ing event increases with time as well. These considerations
might suggest that l should shrink with time. On the other
hand, the fact that influences usually spread either diffusively
or with finite speed could suggest the opposite—that l in-
creases with time. Spreading of influence is hypothesized,
for instance, in theories of “aftershock zone diffusion” �see
Ref. �20�, and references therein�. Other, more complicated
scenarios are also conceivable.

This discussion is meant to clarify that without suffi-
ciently accurate a priori knowledge of the underlying micro-
scopic dynamics any definition of closeness based on pre-
defined scales is arbitrary and might significantly alter the
inferred causal structure. To avoid this problem, or more gen-
erally to minimize the influence of the observer, we take the
view that, to begin with, a suitable definition of closeness
ought to be purely contextual, and depend only on the actual
history of events. Taking this as our starting point—that we
know the observed history of events but do not know the
underlying dynamics—we propose a contextual method to
establish recurrences that uses “zero knowledge” of the un-
derlying physical processes. As a result, our definition is ge-
neric and can apply to a wide variety of situations. This
approach serves as a starting point to analyze data for sys-
tems where the underlying dynamics is obscure, mysterious
or even misconceived. It comprises a fundamental extension
of the concept of recurrences for a point process to recurrent
events in space and time that allows the inference of causal
relations from available or possible observations.

B. Contextual relationships represented by a network

In the approach described here, the inferred relationship
between each pair of events is based on the closeness of the
pair relative to all the other events that have occurred in the
data set. An event B is designated to be a recurrence of a
previous one A if it is closer to A—compared to any other
event occurring in the time interval between A and B. By this
construction, each recurrence is a new “record” in the se-
quence of distances that subsequent events have from A. In
other words, each recurrence is a record breaking event
�21–23�.

This method of inferring relationships between pairs of
events is naturally expressed as a network of connected
events where each event is a node in the graph, and each
recurrent pair is linked with a time directed edge. Significant
deviations in the statistics of the resulting network from that
for a random process �which lacks any causal relations be-
tween events� highlights relevant parts of the causal dynami-
cal process�es� generating the patterns. In principle, the
events themselves do not have to take place in real physical

space, but can occur in any space as long as it is equipped
with a metric that defines distances. As a starting point, here
we only discuss spatiotemporal point processes and take as
our test bed a well-characterized, extensive and compara-
tively accurate catalog �24� of earthquake epicenters for
Southern California.

C. Outline

Section II explains our method for constructing networks
of recurrent events and the relation to record breaking statis-
tics. In Sec. III, the null hypothesis of independent, random
events is introduced and a number of analytic results are
obtained for it. We extend the mathematical theory of record
breaking statistics to the case where both space �or the vari-
able which fluctuates and in which records take place� and
time �or the ordering of events� are treated on the same foot-
ing. Treating both space and time as continuous symmetrizes
the theory—making it more concise. These results allow us
to discover statistical features in the actual network of recur-
rences that are unlikely in acausal random processes and,
hence, plausibly due to causal structures in the underlying
dynamics.

Section IV describes the application to seismicity. The
network analysis reveals detailed statistical features of
seismicity—with robust scaling laws that are invariant over a
range of different time scales. This apparent invariance with
respect to the time span is diametrically opposed to the be-
havior for a random process, where all statistical distribu-
tions depend explicitly on the time span over which events
are recorded. The rupture length and its scaling with magni-
tude �while being invariant with respect to the time span of
the history� emerges from the data analysis without being
predefined by the measurement process. It is a generic mea-
sure for distance between recurrent events. These results in-
dicate that our method is, indeed, tending to identify causally
related events rather than acausal pairs. Further, the relative
separations for subsequent recurrences in space �or time�
form a hierarchy with unexpected properties. All of these
properties disappear when a history constructed by “shuf-
fling” the original earthquake catalog is analyzed using the
same method. In that case, almost all results agree with pre-
dictions of the acausal null model. On the basis of these
results, we argue that the particular features where we ob-
serve strong deviations between the actual history and the
acausal null model can be attributed to causal structures in
the dynamics of seismicity. We end with a summary and
outlook for future works and applications.

II. SYNTHESIZING THE NETWORK OF RECURRENCES

Consider a series of events ai, with i=1, . . . ,N, that are
ordered in time such that event ai precedes event aj if i� j.
The events ai are in the following identified with their spa-
tiotemporal position. We assume that a metric is defined in
space, and we denote by dij the spatial distance between
events ai and aj. Simple examples are spatiotemporal point
processes taking place in three-dimensional Euclidean space
or on the surface of a sphere. The only property of the metric
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relevant to this discussion is that �spatial� distances between
all pairs of events can be ordered, e.g., from smallest to
largest, and the ordering relation is transitive. The same is of
course true for time distances.

The network of recurrent events is defined as follows �see
Fig. 1�: All events ai are represented as nodes and two nodes
i and j with i� j are connected by a directed link or edge eij
if event aj is a recurrence of ai. This occurs if and only if
dij �dik for all k with i�k� j. Thus a recurrence is a new
record with respect to distance. Note that eij and eji cannot
both exist since the directionality of links is determined by
the time ordering. Hence, if i� j only eij can exist. To sum-
marize: the definition of recurrence implies that, for all 2
� j�n, event aj is automatically a recurrence of event aj−1
and, thus, all links e�j−1�j exist. Event aj is also a recurrence
of any previous event ai if it is closer to ai than every other
event ak that occurred in between the two, i.e., for all ak with
i�k� j.

As long as only one event occurs at a time, the directed
network consists of a single cluster in which each node is
linked to at least one other node. Each node i has an in-
degree ki

in, which is the number of links pointing to it from
events in its past, as well as an out-degree ki

out, which is the
number of links emanating from i—corresponding to the
number of records of event i. The collection of in-nodes Ii
= ��j�eji exists� are hypothesized to reflect the potential
cause�s� of event ai while the set of out-nodes Oi
= ��j�eij exists� are hypothesized to contain the effect�s� of ai.
Although it is natural to contemplate associating a weight
factor to each link, this requires further assumptions. Here
we do not deal with this issue and consider all links to have
the same weight. This is in our view a “zeroth order” assign-
ment of causes and their effects based purely on the history
of events and their relationships to each other in space and
time. Note that a single event can have many causes corre-
sponding to all of its incoming links, so the network aspect
of causal relations is not lost in this limit. Weighted networks
of seismic events were constructed using a different method-
ology in Refs. �16,25,26�.

While this network construction, based on record break-
ing events, is directly applicable to fixed collections of
events, it can also be applied when the number of events N
increases over time. The result of adding a new event aN+1 is
to increase the number of links by at least one, namely,

eN�N+1�, without altering any preexisting links. Hence, the
property of being a recurrence is preserved in all cases under
addition of new nodes in time. Also the collections of in-
nodes for all preexisting nodes remains unchanged. Yet, the
out-degree of any node i with i�N+1 can increase by 1,
namely, if aN+1 is a recurrence of ai. So the networks are, in
this sense, dynamically stable growing networks �27,28�.

Some tools and measures already exist to quantify statis-
tical topological features of networks, and to reveal the or-
ganization of the dynamical process�es� giving rise to the
events in terms of network statistics �27,28�. The dependence
of the network statistics can be examined by varying the time
span of the history synthesized into a network, space window
over which the history is observed, and/or selection criteria
for what is defined as an event �in the seismic application
discussed later, this could, e.g., be the range of earthquake
magnitudes�. Our approach opens up a direct view of dy-
namical organization of spatiotemporal activity in terms of
the �static� topology of complex networks—as was also dis-
cussed in Refs. �16,25,26,29,30�. We also believe it possible
that new developments in network theory may turn out to be
even more powerful in analyzing dynamical systems. For the
work described here, standard methods of network analysis
are already sufficient to plausibly infer certain causal rela-
tions in seismic behavior solely from the catalog of earth-
quake magnitudes, epicenter locations, and times.

III. THE ACAUSAL NULL MODEL AND A THEORY
OF RECORDS

A. General remarks

In order to be able to associate causal characteristics of
the dynamics to the network of recurrences, we mathemati-
cally establish statistical properties of a null model, where
the events in space and time are random, uncorrelated and
causally unrelated. Then any statistically significant devia-
tion of the observed network from this null hypothesis can be
attributed to correlations among events and to causal struc-
ture in the underlying dynamics giving rise to the observed
history. The conclusions about the relation to causality are
robust as long as the relevant properties of any acausal null
model are well represented by those we study.

In the following we shall discuss several variants of the
null model. In all of them, both space and time are continu-
ous. To the best of our knowledge, the theory of records has
up to now been developed only for discrete time and con-
tinuous space �21–23�. As we shall see, when both variables
are continuous the core of the theory becomes symmetric
under exchange of space and time, allowing for a more con-
cise formulation. This symmetry is obviously lost when mak-
ing one of the variables discrete.

Let us denote by ��x1 , t1 ; . . .xn , tn� the joint probability
density for having events at locations �xi , ti�, i=1, . . .n. Our
basic assumptions are as follows. �a� Events are independent
and identically distributed,

�n�x1,t1; . . . xn,tn� = �
i=1

n

�1�xi,ti� . �1�

�b� The single-event distributions factorize,

2

7
4

3

6

1

5

8

FIG. 1. �Color online� Eight events in 2D space labeled accord-
ing to their order of occurrence in time. The network of recurrences
is indicated by arrows as described in the text.
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�1�x,t� = �x�x��t�t� . �2�

In particular, when �t�t�=const, Eq. �2� means that we have a
stationary system. Note that 	dxdt�1�x , t�=N, the total aver-
age number of events in the history, as long as this number is
finite.

Instead of event distributions themselves, we shall in the
following use the distributions of space-time distances rela-
tive to some reference event or “event-0” at �x0 , t0�,

�n�l1,t1; . . . ;ln,tn� = �
i=1

n 
� dyi���x0 − yi� − li��
� �n�x0,t0;y1,t0 + t1; . . . ;yn,t0 + tn� .

�3�

It is easily seen that these joint distributions also factorize
under the above assumptions as

�n�l1,t1; . . . ;ln,tn� = �
i=1

n

�1�li,ti� �4�

with

�1�l,t� = �l�l��t�t� . �5�

The functions �l�l� and �t�t� might in general depend on the
reference point x0. We will not indicate this dependence ex-
plicitly, unless it is relevant for the calculation.

First, we consider the special case �l�l�=�t�t�=1, which
holds if the system is stationary, one-dimensional, homoge-
neous, and has the suitable space-time density of events. The
next step is when either one of these functions or both are
equal to 1 up to finite cutoffs and zero beyond, i.e., �l�l�
=��	− l� and/or �t�t�=��
− t�. Physically, 	 is not only the
maximal possible distance between two events �due to finite-
ness of space�, but it is also the rate at which events occur
per unit time, if �t�t�=1. Similarly, a finite value of 
 indi-
cates not only that events are observed in a finite time win-
dow, but also that the average number of events per unit
distance is finite.

B. Canonical coordinates

Fortunately, it is sufficient to discuss these simple cases,
because for any nonsingular densities �l�l� and �t�t� the
problem can be reduced to one of them by a change of co-
ordinates. Consider the two transformations

� = �
0

l

dl��l�l��, � = �
0

t

dt��t�t�� . �6�

Clearly, � is a positive and monotonically increasing function
of l, while � is a positive and monotonically increasing func-
tion of t. Due to conservation of probability, both have unit
density

����� = ��	 − ��, ����� = ��
 − �� , �7�

where we have denoted by 	 and 
 the integrals over �l and
�t, respectively,

	 = �
0




dl��l�l��, 
 = �
0




dt��t�t�� . �8�

Thus, the distributions of events in � and � are cut-off
sharply at 	 and 
, respectively. Note that 	 and 
 can be
infinite.

Thus, for general space and time distributions, we can
first do all calculations in the “canonical coordinates” � and
�, and then translate the results, using inverse transforma-
tions of Eq. �6�, back to the original coordinates l , t. Ex-
amples are given below. In the following we always assume
that � and � are defined by Eq. �6� and, thus, Eq. �7� holds for
all positive � and �.

In canonical coordinates, a typical sequence of recur-
rences is drawn schematically in Fig. 2. For all recurrences i,
�i+1��i and �i+1��i. This is symmetric under the exchange
�↔�,	↔
 and i↔−i. The probability that a given event
�� ,�� is a recurrence of event-0 at �0, 0� is equal to the
chance that no event occurred in the rectangular region
�0,��� �0,��, which is equal to exp�−��� due to the unit
space-time density of events in the �� ,�� plane. Hence, the
joint probability density function �PDF� of recurrences is
given by the same exponential

p��,�� = e−��, �9�

except for the possible cutoffs at 	 and/or 
, beyond which
the density of recurrences is zero; p���	 ,��= p�� ,��
�
=0.

C. Infinite space and time domains

For a detailed discussion of the spatial and temporal dis-
tributions of recurrences we deal separately with the cases of
finite and infinite 	 and/or 
. We first consider the case
where neither �l�l� nor �t�t� is normalizable, i.e., 	=
=
.
This, for example, describes the case of stationary and ho-
mogeneous systems in infinite D-dimensional Euclidean
space, where �t�t�=const and �l�l�� lD−1. But it holds also
approximately for fractal distributions in space �if we neglect
effects of lacunarity �31��, with D being the fractal dimen-
sion. Notice that 	0


dllD−1=
 for all values of D.

ξ

τ

(ξ,τ)i

(ξ,τ)i+1

(ξ,τ)i-1

(ξ,τ)i-2

(0,0)

FIG. 2. A typical chain of recurrences in canonical coordinates.
The reference event or event-0 for all these recurrences is at the
origin �=�=0. The event at ��i ,�i� is a recurrence of the event at �0,
0� if and only if no event is in the shaded region.
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The spatial and temporal density distributions of recur-
rences in canonical coordinates are obtained by integrating
Eq. �9� to obtain the marginals

p���� = �
0




d�p��,�� = 1/� , �10�

p���� = �
0




d�p��,�� = 1/� . �11�

Assuming that the system is translationally invariant in time
and fractal in space, i.e., �t�t�=b=const and �l�l�=aDlD−1,
we obtain for the densities in the original coordinates

pl�l� = �l�l�p����l�� =
aDlD−1

alD = D/l , �12�

pt�t� = �t�t�p����t�� = b�bt�−1 = 1/t . �13�

Thus the recurrence density in time is independent of the
event rate �per unit space-time region�. Similarly, for an
event distribution with given �fractal or Euclidean� nontrivial
dimension, the recurrence density depends on the dimension
but not on the parameter a. Also, notice that pt�t� is com-
pletely independent of the spatial event distribution �l�l�,
and pl�l� is independent of �t�t�.

For homogeneous and monofractal stationary spatial dis-
tributions both pt and pl are independent of the reference
point defining the recurrences. This is no longer true for
multifractals, where pl�l� depends on the local �pointwise�
dimension at the event which defines the recurrences.

The analog of Eq. �13� for discrete time is a classic result
in the theory of records �21–23�. In contrast, Eq. �12� was
first reported in Ref. �29�, as far as we know.

D. Finite space and infinite time and vice versa

Let us assume that �t�t� is not normalizable but �l�l� is

	 � 
, 
 = 
 . �14�

Now, of course, p����=0 for ��	. For ��	, on the other
hand, p���� is still given by integrating exp�−��� over all
positive values of � as in Eq. �10�, i.e.,

p���� =
1

�
��	 − �� . �15�

In terms of the original coordinates, one finds

pl�l� = �l�l�p����l�� =
�l�l�

�
0

l

dl��l�l��
. �16�

In contrast, p���� is obtained by integrating Eq. �9� over the
finite domain 0���	, which gives

p���� =
1

�
�1 − e−	�� . �17�

In the stationary case, when t is just proportional to �, the
density of recurrences in t is given by the same formula with

	 replaced by the rate of events per unit t. The additional
term compared with Eqs. �11� and �13� reflects the probabil-
ity that no recurrence occurs up to time � and t, respectively.

In the opposite case �	�
 , 
=
� of finite event rate per
unit distance and infinite rate per unit time �corresponding
typically to infinite space and finite time, with finite space
time density of events�, the situation is completely symmet-
ric. In that case p���� is cutoff sharply at a finite value, while
p���� is cutoff with an exponential correction term as in Eq.
�17�.

E. Finite space and finite time

Now both p���� and p���� are obtained by integrating Eq.
�9� over finite domains

p���� =
1

�
��	 − ���1 − e−
�� , �18�

p���� =
1

�
��
 − ���1 − e−	�� . �19�

Thus, p���� asymptotically approaches the constant 
 in the
limit �→0 while for intermediate arguments we recover the
1 /� decay for infinite space and time domains given in Eq.
�10�. For large arguments, the density sharply drops to zero
at �=	. p���� asymptotically approaches the constant 	 in the
limit �→0 while for intermediate arguments we recover the
1 /� decay for infinite space and time domains given in Eq.
�11�. For large arguments, the density sharply drops to zero
at �=
. The respective transition points �� and �� between
the constant behavior for small arguments and the decaying
behavior for intermediate arguments can be defined in the
standard way by requiring that the argument of the exponen-
tial equals −1, i.e.,


�� 
 1, �20�

	�� 
 1. �21�

Specific realizations of such a process include stationary sys-
tems observed over a finite time window, where events occur
only in a finite region of space—or are only recorded when
they fall into that region. One example is �t�t�=b��T− t�
and �l=aDlD−1��R− l� with positive constants T and R. In
this case, Eq. �18� translates into

pl�l� = �abTDlD−1 for l � l��T�, l � R ,

D/l for l � l��T�, l � R ,

0 for l � R ,
� �22�

and Eq. �19� translates into

pt�t� = �abRD for t � t��L�, t � T ,

1/t for t � t��L�, t � T ,

0 for t � T ,
� �23�

with

l��T� 
 �abT�−1/D �24�

and
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t��L� 
 �abRD�−1. �25�

Finally, let �N�=abTRD be the average total number of ob-
served events. Then the expressions for the transition points
are particularly simple

l��N� = L/�N�1/D, �26�

t��N� = T/�N� . �27�

In this simple example and in the situations discussed in Sec.
III D, we have assumed that translational invariance holds.
However, this is generally not true. Specific realizations of
such processes include stationary systems observed over a
fixed finite time window, where events occur only in a fixed
finite region of space—or are only recorded when they fall
into that region. Due to the lack of translational invariance,
the distributions of distances �spatial and temporal� between
events depend on the defining event. We discuss the conse-
quences of broken translational invariance now.

For concreteness and simplicity, let us assume a stationary
system where events occur uniformly on an interval 0�x
�L with periodic boundary conditions, with space-time den-
sity �. They are recorded only in the time window 0� t
�T. In general, the distributions of distances between events
in a bounded space-time region depend on the reference
point �x0 , t0�, but in the present case this simplifies due to the
periodic boundary condition: The recurrence distributions
depend on t0, but not on x0. More precisely,

�l�l;x0,t0� = 2���L/2 − l�, �t�t;x0,t0� = ��T − t0 − t� ,

�28�

for positive arguments t and l, respectively. Note that the
asymmetrical attribution of the factor � to �l is arbitrary.

This ansatz gives 
= �T− t0� and 	=�L. The relations be-
tween original and canonical coordinates are

��l� = �2�l , 0 � l � L/2,

�L , l � L/2,
� �29�

��t� = �t , 0 � t � T − t0,

T − t0, t � T − t0.
� �30�

The recurrence PDFs are obtained by inserting this into Eqs.
�18� and �19� and transforming back to the original coordi-
nates. The average distributions of distances between recur-
rences and reference points are obtained by averaging over
t0. The final results are

�pl�l��t0
=

1

l

1 −

1 − e−2�lT

2�lT
���L/2 − l� , �31�

�pt�t��t0
=

1

t
�1 − e−�Lt��1 −

t

T
���T − t� . �32�

These detailed results are included in order to demonstrate
that exact calculations are possible in the most simple case.
But in more realistic cases no exact results can be expected.
As a general rule, the simple power laws of Eqs. �12� and
�13� will hold for intermediate values of l and t, but correc-

tions will be necessary both for large and for small l and
t—as follows from Eqs. �18� and �19�. The corrections ren-
der the distributions finite at small values of the arguments,
and they cut them off at large ones.

The cutoffs at large l and t occur just at the sizes of the
system. Their detailed shapes depend, as suggested by com-
paring Eqs. �31� and �32� with Eqs. �22� and �23�, on the
specific properties of the system at large scales. The behavior
at small distances is more general.

To see this, let us consider Eq. �32� in more detail. There
the deviation from the infinite system limit happens when
�tL�1, i.e., at a time

t � t��L� 
 ��L�−1, �33�

which exactly coincides with Eq. �25� for the translational
invariant case. Since � is the density of events in space-time,
t� is the average time delay between successive events. Ob-
viously, recurrences cannot follow each other faster than
events. Similarly in Eq. �31�, the deviation from the infinite
system limit happens when 2�lT�1, which coincides with
the expression for l��T� in the translational invariant case
given by Eq. �24�.

Not only is the scaling of l� and t� identical to the trans-
lationally invariant case but also the qualitative behaviors of
�pl�l��t0

and of �pt�t��t0
for l� l� and t� t�, respectively, are

identical. This strongly suggests that the results given in Eqs.
�22�–�25� capture the essential behavior for scales smaller
than the large scale cutoff—even when translational invari-
ance is explicitly broken.

F. Correlations between recurrences and properties of
recurrences with fixed rank

Let p�l , t ; l� , t�� be the PDF that two events at space-time
positions �l , t� and �l� , t�� are both records—not necessarily
subsequent ones. Referring to Fig. 2, and using Bayes’ theo-
rem in canonical coordinates, we are interested in the prob-
ability that no other event occurs in either of the two rect-
angles associated to the events, which is determined by the
union of the two rectangular areas. Hence if ���� and �
���, then

p��,�;��,��� = e−��−���−������
 − ����	 − ��� . �34�

This directly determines p�l , t ; l� , t��.
Integrating over � and �� gives the joint PDF for having

recurrences at times � and ��,

p��,��� = �
0

	

d���
0

��
d�e−��−���−������
 − ��

=
1

���

1 −

�e−	�� − ��e−	�

� − ��
���
 − �� . �35�

For 	=
, this gives p�� ,���= �����−1, for �����
 so the
two recurrences are uncorrelated. For finite 	, records are
correlated; i.e., p�� ,����p����p�����. For a stationary pro-
cess, these results hold in the original coordinate t as well.

Alternatively, let q�l , t ; l� , t�� be the probability that two
events at �l , t� and �l� , t�� are successive records. Assuming
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again that ���� and ����, we now demand that both are
records, as above, and also that no other event happens in the
rectangle ��� ,��� ��� ,�� or

q��,�;��,��� = e−�����	 − �����
 − �� . �36�

Integrating over � and �� gives the joint PDF for having
successive records at times � and �� to be

q��,��� = �
0

	

d���
0

��
d�e−�����
 − ��

=
1

�2 �1 − �1 + 	��e−	�� for �� � � � 
 . �37�

Hence, times to successive recurrences are always correlated.
When 	=
, the joint PDF is q�� ,���=1 /�2 for �����
.

For the PDF of the ratio of the times of successive records
x=�� /��0, it directly follows for finite 	 that

q��x� = �
0


x

d��q���x�,����d�

dx
� = ��1 − x��

i=1



�i − 1��− 	
�i

i i!
,

�38�

which is constant in the interval �0;1�. This is also the result
in the original coordinates, if the system is stationary—in
which case t�� and x= t� / t.

We now discuss spatial distance distributions of recur-
rences with fixed rank i, and first consider a finite stationary
system infinitely extended in time �
=
�. Let p�

�i���� be the
spatial distance PDF for the ith recurrence following event-0.
For any i�2, the recursion relation

p�
�i���� = �

�

	

d�� q�������p�
�i−1����� �39�

exists. The quantity q������� is the conditional PDF, given
that the previous recurrence happened at distance ��, for the
distance of the next recurrence. One easily shows that

q������� =
1

��
���� − �� �40�

independently of i, so that

p�
�i���� = �

�

	 d��

��
p�

�i−1����� . �41�

The solution for finite 	 is

p�
�i���� =

��	 − ��
�i − 1�!

�ln
	

�
�i−1

. �42�

If the event density in original coordinates was ��l�
=aDlD−1��R− l� /RD, i.e., confined to a disk with radius R,
then the last equation translates into

pl
�i��l� = a��R − l�

DilD−1

�i − 1� ! RD �ln R/l�i−1, �43�

while Eq. �40� gives for the PDF of the ratio x= l / l��0

ql�x� = DxD−1��1 − x� . �44�

These last results have to be modified when 
�
, i.e., when
there is a finite observation window in time. In that case we
are not guaranteed that at least i recurrences exist, and thus
pl

�i��l� has to be replaced by the conditional PDF, conditioned
on the existence of �i recurrences. That requires a more
extensive development than we take up here.

G. Distribution of the number of recurrences or the degree
distributions

The out-degree distribution Pout�k ,N� is the probability
that a randomly chosen event out of a sequence of N events
has k records. This probability can be deduced using previ-
ous results from the theory of records �21–23,32,33�. We
assume that the system is stationary, with a finite rate of
events per unit time. We denote the event defining recur-
rences as event-0. We use the fact that recurrences are
records in the sense that each recurrence is an event that is
closer to event-0 than all previous events that happened after
event-0. Consider a series of i events following event-0. The
probability that event j is a record is 1 / j and the probability
that it is not is �j−1� / j. Hence the probability that there is
precisely one record in a series of i events following event-0
is Pi�1�=� j=2

i �j−1� / j=1 / i. Notice that the first event after
event-0 is always a record. The probability that there are
precisely two records in the series of i events is

Pi�2� = ��
j=2

i
j − 1

j
��

l1=2

i � l1

l1 − 1
�

1

l1
� =

1

i
�
l1=2

i
1

l1 − 1
.

�45�

Continuing with standard methods it is possible to show that
the probability of finding precisely k records in a series of i
events Pi�k� is given by

Pi�k� =
1

i
�

1�l1�. . .�lk−1�i

1

�l1 − 1� ¯ �lk−1 − 1�
=

�Si
k�

i!

�
�ln i�k−1

i�k − 1�!
, �46�

where the symbol S indicates Stirling’s number of the first
kind and the last expression holds for i�k�1. Considering
that each event except the last one in the sequence of N
events initiates its own sequence of records, and hence is an
event-0, gives

Pout�k,N� �
1

N
�
i=1

N−1
�ln i�k−1

i�k − 1�!
�

�ln�N��k

N k!
, �47�

where the last step involves approximating the sum as an
integral, which is valid for large N. Therefore, the out-degree
distribution for a random process of N�1 events is a Pois-
son distribution with mean degree �k�� ln N �33�.

Furthermore, the probability to have out-degree 1,
Pout�1,N�, can be computed exactly �21–33�: For those nodes
the closest event in space is also the closest in time. For
event i, this happens with probability 1 / �N− i�. Thus,
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Pout�1,N� = N−1�
i=1

N−1
1

N − i
�

ln�N� + eM

N
, �48�

where we have approximated the harmonic series by the cor-
responding integral and eM �0.58 is the Euler-Mascheroni
constant. Note that Eq. �48� is exact in the limit N→
.

For the in-degree distribution Pin�k ,N�, similar consider-
ations apply: Event i is a recurrence of event j �0� j� i�
with probability 1 / �i− j�, which is independent of N. This
allows to compute the in-degree distribution Pi

in�k� of event
i:

Pi
in�k� =

1

i
�
l1=0

i−k

�
l2=l1+1

i−k+1

¯ �
lk−1=lk−2+1

i−1
1

l1l2 ¯ lk−1
=

�Si
k�

i!

�
�ln�i��k−1

i�k − 1�!
, �49�

for 0�k� i−1 and zero otherwise. Hence

Pin�k,N� =
1

N
�
i=1

N−1

Pi
in�k� �

�ln�N��k

N k!
. �50�

As expected for a fully random process, Pin�k ,N� is identical
to Pout�k ,N� and well-approximated by a Poisson distribution
with mean degree �k�� ln N for N�1.

H. Degree correlations

Due to the acausal nature of the null model, the joint
probability Pi�kin ,kout� that event i has in-degree kin and out-
degree kout factors for all nodes i. As a result

Pi�kin,kout� = PN−i�kout�Pi
in�kin� �

�ln�N − i��kout−1

�N − i��kout − 1�!
�ln�i��kin−1

i�kin − 1�!
�51�

This allows us to compute the mean out-degree of all events
with a given in-degree in a sequence of N events

�kout��kin,N� = �
kout=0

N−1

kout 1

N
�
i=1

N−1

Pi�kin,kout�/Pin�kin,N�

� 1 +
1

�ln�N − 1��kin�
1

N−1 �ln�i��kin

N − 1 − i
di .

�52�

The out-degree �kout� weakly depends on kin due to the fact
that the rank of each event implicitly couples its in- and
out-degree in a finite sequence of events. For instance, if the
rank of an event is small �large� compared to N, the in-
degree is more likely to be small, but the out-degree is more
likely to be large. Consequently, �kout��kin ,N� decreases with
kin for fixed N. For similar reasons, weak correlations also
appear between the in- and out-degree of a node and the in-
and out-degree of its recurrences. For example, a large
�small� in-degree for a node implies on average a small
�large� out-degree for its recurrences. Similarly, the out-
degree �in-degree� of recurrences increases on average with
the out-degree �in-degree� of their event-0.

IV. APPLICATION TO SEISMIC PATTERNS

Seismicity is a prime example where localized events in
space and time can be accurately and, with certain caveats,
exhaustively recorded. It is also a phenomenon where the
causal features of the dynamics responsible for the patterns
are subject to ongoing debate and uncertainty. Seismic data
involving many earthquakes occurring over large regions of
space and time exhibit a number of regularities. These in-
clude clustering, fault traces and epicenter locations with
fractal statistics, as well as scaling laws such as the Omori
and Gutenberg-Richter �GR� laws �see, e.g., Refs. �14,15,34�
for a review�. Given that the associated earthquake patterns
in space and time are readily observable, approaches based
on the concept of spatiotemporal point processes have been
amply demonstrated to be feasible �16,35–39�. In that case,
the description of seismicity is reduced to recording the size
or magnitude of each earthquake, its epicenter and its time of
occurrence.

To test the suitability of our method to characterize seis-
micity in a way that makes it possible to infer relevant causal
features of its dynamics and to extend our earlier analysis
�29�, we study a “relocated” earthquake catalog from South-
ern California �24�. The catalog has improved relative loca-
tion accuracy within clusters of similar events, the estimated
horizontal standard errors being typically less than 50 to 100
m and the estimated vertical standard errors being typically
less than 100 to 200 m �40,41�. Due to the higher relative
and absolute location errors for the depth of an earthquake,
we only consider epicenters in the following. The catalog is
assumed to be homogeneous from January 1984 to Decem-
ber 2002 and complete for events with magnitude larger than
mc=2.5 located within the rectangle �120.5°W,115.0°W�
� �32.5°N,36.0°N� �42�. Restricting ourselves to magni-
tudes larger than mc gives N=22217 events �see Fig. 3�. In
order to test for robustness and the dependence on magni-
tude, we analyze this subcatalog and subsets of it, obtained
in two different ways: by �a� selecting different threshold
magnitudes, namely, m=3.0,3.5,4.0 giving N=5857, 1770,
and 577 events, respectively, or �b� using a shorter period
from January 1984 to December 1987 giving N=4744 events
for magnitude threshold m=mc.

FIG. 3. Spatial pattern of seismicity in Southern California �24�,
as described in the text.
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It is important to note that all events in the catalog are
treated in the same way. In particular, we do not distinguish
between foreshocks, mainshocks, and aftershocks. Hence,
our definition of a recurrence—an event is a recurrence of
any previous event if it is closer to it in space than all the
intervening events—is a priori independent of those classi-
fications. Note also that our definition of a recurrence is
wholly unrelated to the notion of “characteristic earth-
quakes” on a single fault as introduced, for example, in Refs.
�43–45�.

Figure 4 shows the recurrences with magnitude m�mc
defined by our method for one randomly chosen event in the
catalog, an earthquake of magnitude 2.9 that occurred on
January 10, 1999. The actual spatial and temporal distance
between this event and each of its recurrences is listed in
Table I. It has to be noted that the number of recurrences of
a given earthquake or event-0 is generally not related to its
magnitude. The number of recurrences of the largest earth-
quakes such as the Landers event or the Hector mine event
are just above the average �see Sec. IV B�. Thus, most recur-
rences are associated to event-0s with small magnitude—
which are much more abundant according to the Gutenberg-
Richter law.

A. Spatial distances of recurrences

Figure 5 shows the estimated PDF pm�l� of recurrences at
a spatial distance l in the subcatalog with threshold magni-
tude m. The PDFs exhibit a peak at a typical distance l��m�,
which increases with magnitude. For sufficiently large l, all
distributions show a power law decay with an exponent
�1.05 up to a cutoff. This cutoff corresponds to the size of
the region in Southern California that we consider, and hence
is a finite size effect. For small distances l� l��m�, we ob-
serve an approximately linear increase.

With a suitable scaling ansatz, the different curves in Fig.
5 fall onto a universal curve, except at the finite size cutoff.
The inset in Fig. 5 shows results of a data collapse using

pm�l� � l−1.05F�l/100.45m� . �53�

The scaling function F has two regimes, a power-law in-
crease with exponent �2.05 for small arguments and a con-
stant regime at large arguments. The transition point between
the two regimes can be estimated by extrapolating them and
selecting the intersection point, giving L0=0.012 km. For
the characteristic distance that appears in F we find

l��m� � L0 � 100.45m. �54�

1. Discovery of causal structure

Although pm�l� has the same overall shape as the distri-
bution p�l� of the finite null model �see Eq. �22��, there are
fundamental differences with respect to the dependence on
the time span over which events are recorded. For the earth-
quake data, pm�l� and in particular l��m� do not depend on

TABLE I. List of recurrences of the 2.9 earthquake given in Fig.
4 as defined by our method for threshold magnitude m=2.5.

Rank Magnitude l �km� T �h�

1 2.5 234.36 22.16

2 2.5 87.39 42.81

3 2.7 84.98 198.87

4 2.5 84.34 232.94

5 2.6 83.97 236.56

6 3.0 73.99 296.51

7 2.8 72.80 424.95

8 3.3 26.37 961.64

9 2.5 13.38 3471.73

10 2.9 6.99 3482.97

11 2.6 5.31 25452.30

240˚

240˚

241˚

241˚

242˚

242˚

243˚

243˚

34˚00' 34˚00'

34˚30' 34˚30'

35˚00' 35˚00'

35˚30' 35˚30'

FIG. 4. �Color online� Map showing a 2.9 earthquake �black�
and its recurrences as defined by our method. The size of the sym-
bols linearly scales with the magnitude of the event and its color
corresponds to the time of occurrence �from darker colors to lighter
colors�. See Table I for more details. FIG. 5. �Color online� Distribution of distances l of recurrent

events for sets with different magnitude thresholds m. The distribu-
tion for m=2.5 up to 1988 is also shown and is almost indistin-
guishable from the data for the full catalog with m=2.5—showing
the invariance of the distribution with respect to the time span of the
recorded events. Filled symbols correspond to distances below 100
m and are unreliable due to location errors. The inset shows a data
collapse, obtained by rescaling distances and distributions accord-
ing to Eq. �53� �excluding unreliable points�. The full straight line
has slope 2.05; the vertical dashed line indicates the prefactor L0 in
the scaling law for the characteristic distance l��m�=L0�100.45m.
Note that 	0


pm�l�dl=1.
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the time span at all but rather depend directly on m. This
conclusion comes from the explicit comparison of two dif-
ferent observation periods in Fig. 5 with the same m. With
the exception of the smallest values of l, p2.5�l� is largely
unaltered if only the subcatalog up to 1988 is analyzed and l�

does not change at all. It is important to note that the total
number of events in the latter subcatalog is roughly 5 times
smaller.

In the null model l� depends explicitly on the finite time
span of the observation period T, as shown in Eq. �24�. In the
real data though, the spatiotemporal ordering of earthquakes
determines the value of l�, regardless of the duration of the
observation period—as long as it is large enough to obtain
sufficient statistics to determine l��m� and small enough that
seismic correlations do not disappear over that time span.
This is confirmed by analyses of other subcatalogs �not
shown�. On this basis, we conclude that the characteristic
length must therefore reflect robust physical properties of the
underlying dynamics over the given observation periods. Its
�quasi-�invariance is not a property of the null model. There-
fore, it reflects causal structure in the dynamics of seismicity.
As a result, if one rearranges the seismic catalog by “shuf-
fling” the locations and magnitudes of events �see Sec.
IV A 1�, then the invariance of l� is lost and the distribution
of recurrences behaves the same as the null model for spatial
dimension D=2 �see Eqs. �22� and �24��. To sum up: the
invariance of l��m� is an indicator of causality and is thereby
a physically meaningful length scale in the dynamics of seis-
micity over the time scales we can explore with statistical
methods—minutes to decades.

2. Identification with the rupture length

The almost complete lack of dependence of pm�l� �exclud-
ing very small values of l� on the considered time span can
be explained by at least two scenarios: �1� recurrences with
l� l��m� are greatly suppressed at large time scales and �2�
recurrences with l� l��m� are greatly enhanced at short time
scales compared to the null model with constant rate. As we
will discuss below, it is likely that both effects are present.

Physically, such a behavior is reasonable if we identify l�

with the rupture length of the earthquake that starts a chain
of recurrences. As described by Omori’s law �46�, the rate of
seismic activity tends to increase directly after an earthquake
nearby �close to the rupture area of the event�. Moreover,
there is some evidence that due to the stress relief within the
rupture area itself, it tends to exhibit less seismic activity for
awhile—see, for example, Ref. �47�. This supports the hy-
pothesis that activity increases for l� l��m� at shorter times,
but gets suppressed for l� l��m� over longer times.

This identification is also affirmed by the fact that the
scaling of l��m� with m is close to the estimated behavior
of the rupture length LR�m���0.02�10m�/2 km given
in Ref. �48� and remarkably close to LR�m��=�AR�0.018
�100.46 m� km given in Ref. �49�, where m� is the magni-
tude of the earthquake and AR its rupture area. The close
agreement between the latter and Eq. �54� suggests that the
characteristic length scale of distances for recurrent events is
indeed the rupture length of events with m�=m, defined in
terms of the rupture area l�=LR
�AR. Thus, our approach

allows us to discover the rupture length as a causal conse-
quence of the dynamics based purely on the spatiotemporal
organization of seismicity without any additional knowledge
of the microscopic dynamics and the actual rupture processes
that occur—even, in fact, treating the seismic events as
point-like in space and time.

The identification l�=LR is also consistent with the fact
that the description of earthquakes as a point process breaks
down below the rupture length. Then, the relevant distance�s�
between earthquakes is not determined solely by their epi-
center positions but also by the relative orientation and size
of the extended ruptures in 3D space. Thus, we expect to find
a different correlation structure for distances smaller than the
rupture length. In fact, this is precisely what our data show,
namely, a linear increase at small distances l� l��m� �see the
main part of Fig. 5 and also the straight line with a slope of
2.05 in the inset of Fig. 5�.

3. Robustness of l�(m)

The lengths l� observed for the values of m we consider
are larger than the location errors ��100 m�. Simulations
show that p4�l� �blue triangles in Fig. 5� does not change
substantially if the epicenters in the catalog are randomly
relocated by a small distance up to one kilometer. Yet, the
maximum for p2.5�l� shifts to larger l with this procedure,
destroying the scaling of l��m�. Since the smallest l� that
obeys the data collapse is �160 m, the data collapse we
observe for the original data verifies that the relative location
errors are indeed less than 100 m, or of that order �50�.
Furthermore, the absence of any anomaly due to location
errors near 100 m in Fig. 5 indicates that recurrences within
the rupture area lack correlations. This is also supported by
Eq. �22� which predicts the observed behavior pm�l�� l for
l� l� if events are happening uniformly and randomly in 2D
space during a finite observation period, or are recorded as
happening randomly in space due to location errors.

4. Spatial hierarchy of subsequent records

To further examine the behavior of pm�l�, we study sepa-
rately the contributions of recurrences with definite rank. The
rank i is defined as in Sec. III F, i.e., for a given event-0,
recurrence i+1 directly follows recurrence i as shown in Fig.
2. Since pm�l� is the PDF that any recurrence occurs at dis-
tance l for a catalog with threshold magnitude m, we have for
any finite number of events N,

pm�l� = �
i=1

N−1

prec�i�pi
m�l� =

�i=1

N−1
Nipi

m�l�

�i=1

N−1
Ni

, �55�

where prec�i� is the probability that a randomly chosen recur-
rence is an ith recurrence, Ni is the number of events in the
sequence that have at least i recurrences �or out-going links�,
and pi

m�l� is the conditional PDF that, given that a recurrence
is an ith recurrence, it happens at distance l.

In the inset of Fig. 6, the data are analyzed according to
the ansatz that the distribution of first recurrences, p1

m�l�, has
the scaling form
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p1
m�l� = l−�rF̃�l/100.45 m� , �56�

with �r�0.6 and F̃ similar to F �see Eq. �53� and the inset of
Fig. 5 for comparison�. In particular, the same characteristic
distance l��m� appears as for pm�l�. Moreover, we find that
the latter is true for all pi

m�l�—which is further evidence
supporting the interpretation of l� as the rupture length. The
behavior of p1

m�l� indicated in Fig. 6 and described by Eq.
�56� extends earlier results for a catalog from Southern Cali-
fornia with lower spatial resolution ��1 km� which did not
allow us to resolve the dependence on m �35�.

Related to the distribution of distances for recurrent
events is the distribution of distance ratios li+1 / li of consecu-
tive recurrences. Here again recurrences are ordered such
that recurrence i+1 directly follows recurrence i. For i=0,
we take l0=634.3 km, which is the largest possible distance
in the region covered by the catalog. By construction these
ratios are always between zero and one. We denote by qi

m�x�
the PDF that li+1 / li=x for each event that has an �i+1�th
recurrence. As indicated in Fig. 7, the data for m=2.5 and
i=0 �black circles� scale over a wide region as q0

2.5�x�
�x−�r with �r�0.6. This is expected since q0

m�x�� p1
m�l�.

Although each distribution qi
2.5�x� is different, the curves for

i�1 also show �more restricted� power law decay compa-
rable to q0

2.5�x�. For li+1 / li→1 they also exhibit a peak that
becomes more pronounced with increasing i. This is due to
recurrences occurring at almost the same distance �but not at
the same place� suggesting again that recurrences are sup-
pressed within the rupture area, but are enhanced just outside
that area.

The observed behavior of qi
2.5�x� and p1

m�l� is very differ-
ent from the behavior predicted by the null model. For the
null model, in the long time limit, Eq. �44� gives qi

m�x�
=DxD−1 which is not only independent of i but also purely
determined by the spatial dimension D—and is increasing
for D�1 rather than decreasing. Similarly, Eq. �43� gives

p1
m�l�� lD−1 for the null model. For Southern California, it

has been found that D=D2=1.2 �36,35�, which would lead to
an increasing function qi

m�x��x0.2 rather than a decaying
power law behavior. Although the above predictions of the
null model are only strictly true in the infinite time limit, we
point out that repeating this analysis of the hierarchy of re-
currences for a “shuffled” catalog reveals behavior in close
agreement with the null model and diametrically opposed to
the results shown in Fig. 7 for the actual seismic record �36�.

Thus, the observed behavior of qi
2.5�x� and p1

m�l� as well as
the value of �r are not determined by the spatial distribution
of seismicity alone but reflect causal structures leading to the
complex spatiotemporal organization of seismicity. More-
over, the shape of p1

m�l� shows that the first recurrence is
much more likely to happen at a typical distance of l� than
predicted by the null model. This enhancement goes along
with a suppression of recurrences with l� l� as the increasing
�with i� peak at x=1 for qi

m�x� indicates. These results sup-
port the overall picture that recurrences with l� l��m� are
greatly suppressed at large time scales while recurrences
with l� l��m� are greatly enhanced at short time scales.

B. Network properties

We now turn to the analysis of seismicity in terms of the
statistical properties of its network of recurrences �or
records� as defined in Sec. II and illustrated in Fig. 1. Figure
8 shows the in- and out-degree histograms for different val-
ues of m, which are compared to Poisson distributions with
the same respective mean degree and normalization ��k�
=7.40,6.24,5.20,4.35 for m=2.5,3.0,3.5,4.0, respectively�.
A Poisson out-degree and in-degree distribution is expected
for the null model �see Eqs. �47� and �50��. For the actual
seismic network, the out-degree distributions are signifi-
cantly different from a Poissonian �51�. In particular, the net-
work keeps a preponderance of nodes with small out-degree
as well as an excess of nodes with large out-degree compared
to a Poisson distribution. This effect becomes more pro-
nounced with increasing magnitude.

FIG. 6. �Color online� Distribution of distances l of the first
recurrence for different magnitude thresholds m. Filled symbols
correspond to distances below 100 m and are unreliable due to
location errors. Note that 	0


p1
m�l�dl=1. Inset: Data collapse ob-

tained by rescaling distances and distributions according to Eq. �56�
�excluding unreliable points�.

FIG. 7. �Color online� Distribution of recurrence distance ratios
li+1 / li for m=2.5 and different values of i with l0=634.3 km. The
straight line corresponds to a decay with exponent 0.6. Note that
	0


qi
m�x�dx=1.
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The behavior of the out-degree distribution implies that
the network topology is able to discern consequences of the
causal structure of seismicity: The preponderance of nodes
with small out-degree, for example, can be related to the
physical picture discussed above that seismic activity is typi-
cally greatly enhanced directly after the occurrence of an
earthquake close to its rupture area but suppressed within the
rupture area itself. Such a dynamics makes it more likely that
only very few recurrences occur, even at long times. For the
in-degree distributions, we find that they roughly agree with
a Poisson distribution although there are still significant de-
viations from the null model for k=1 �52�.

Note, however, that �k�—which is obviously the same for
the in- and out-degrees—decreases with m, simply because
the number of events N shrinks with m. This is shown in Fig.
9 where �k� is also displayed for a randomly shuffled catalog.

1. Shuffling procedure

Shuffling was performed in the following way: Consider
all events in the catalog with magnitude m��mc=2.5.
Shuffle the magnitudes and the epicenter locations sepa-
rately, keeping the times of occurrence, and then apply the
recurrence analysis for the different subsets defined by dif-
ferent magnitude thresholds as before. The shuffled catalog
can, thus, be considered as a realization of a random process
with no spatiotemporal correlations, although both spatial
correlations and temporal correlations may persist separately.
Based on the null model and Eq. �47�, we expect a Poisson
out-degree distribution with �k�� ln N which is exactly what
we find for the randomly shuffled catalog. This dependence
of �k� can be clearly seen in Fig. 9. Yet, for the original
earthquake data we find for large N

�k� � 0.8 ln N . �57�

Hence, the average number of recurrences is significantly
less than for the null model, which is presumably related to

the suppression of recurrences with l� l��m�—as discussed
earlier. Figure 9 gives further evidence that recurrences em-
phasize particular aspects of spatiotemporal clustering, asso-
ciated with the causal dynamics of seismicity.

2. Degree-degree correlations

The causal structure of seismicity does not, however, in-
duce strong degree-degree correlations between events and
their recurrences other than those arising from the temporal
order of a finite sequence of events—as in the acausal null
model. Panels �a� to �c� in Fig. 10 show the average out-
degree and in-degree of recurrences as a function of the in-
degree or out-degree of their corresponding event-0 �53�.
There are no qualitative differences between the actual earth-
quake catalog from California and a surrogate, which is a
randomly shuffled version of the catalog. In particular, the
behavior shown in panels �a� and �b� agrees with the acausal
null model �see the discussion following Eq. �52��. Note that
the offset between the two data sets is simply due to different
�k�.

The situation is different for the dependence of the mean
out-degree on the in-degree of the same node. As shown in
Eq. �52�, �kout� has a weak dependence on kin in the null
model such that �kout� decreases with kin. This is exactly what
we find for the shuffled catalog as shown in panel �d� of Fig.
10. However, the same panel also shows that for the actual
earthquake catalog �kout� increases with kin—exactly the op-
posite of the null model. Moreover, kin� �k� implies kout

� �k� on average. This is again consistent with a causal dy-
namics where earthquakes are clustered in space and time.

3. Clustering coefficient

Other network properties include various measures of
clustering. In general terms, clustering quantifies how well

FIG. 8. �Color online� In- and out-degree histograms for differ-
ent values of m. For a given earthquake, the in-degree �out-degree�
k is the number of links directed at it �originating from it� as defined
in Sec. II. Open �red� symbols correspond to the in-degree, filled
�black� symbols correspond to the out-degree. Error bars can be
estimated as �N�k�. The red lines correspond to Poisson distribu-
tions with the same respective mean and normalization.

FIG. 9. �Color online� Mean degree �k� as a function of number
of events N �or magnitude m�. Open symbols correspond to the
original catalog for different values of m, while filled symbols cor-
respond to the shuffled catalog �see text�. The lines correspond to
best fits giving �k�original=−1.03+0.84 ln N and �k�shuffled=−0.47
+1.01 ln N.
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connected the neighbors of a node are among themselves. In
the case of recurrences, it refers to the likelihood that recur-
rences of the same event are also recurrences of each other.
There are different, inequivalent definitions of the clustering
coefficient C �54�. Here we focus on the definition based on
the local clustering coefficient Ci adapted to directed net-
works.

For all nodes i with out-degree larger than one, the clus-
tering coefficient Ci is given by the ratio of existing links Ei
between its ki

out recurrences to a possible number of such
links 1

2ki
out�ki

out−1�. Then the clustering coefficient C of the
network is defined as the average over all nodes i with out-
degree larger than 1

C = �Ci� = � 2Ei

ki
out�ki

out − 1�� i

. �58�

This definition implies, for example, that the clustering co-
efficient of an Erdös-Renyi graph is equal to the probability
of linking each pair of nodes plink= �k� / �N−1�=Crand.

For the data from California, we obtain C=0.2647 for m
=2.5. This is significantly larger than C=0.1825, which is
the value for the shuffled catalog. It has to be pointed out,
though, that the average is performed over a different num-
ber of nodes in the two cases since the shuffled catalog
hardly contains any events with out-degree equal to 1. For
the shuffled catalog, there are only 15 events with kout=1,

which is close to the expected value of 10.6 for the random
model—see Eq. �48�. This value is two orders of magnitude
less than for the actual seismic data.

Another difference between the two data sets is the distri-
bution of Ci. For the actual earthquake data, the distribution
is much broader. The standard deviation for the distribution
is 0.2146 compared to 0.0934 for the shuffled catalog. This
difference is mainly due to the fact that the original data
contain many events with Ci=0 or Ci=1—unlike the
shuffled catalog.

C. Temporal distances of recurrences

The temporal distances between events and their recur-
rences can be analyzed in the same way as the spatial dis-
tances. The PDF pm�t� for these waiting �or “inter-
occurrence”� times for different threshold magnitudes m is
shown in Fig. 11. These all decay roughly as 1 / t� with �
�0.9 for intermediate times as indicated in the inset. The
apparent scaling region in Fig. 11 shows some curvature,
though. Due to the finite duration of the catalog, there is an
observational cut-off at the longest time scales. At the short-
est time scales, pm�t� goes over to a constant limit. While the
shape of the distribution is roughly similar to the null model
�see Eq. �23��, pm�t� for the earthquake catalog is indepen-
dent of m and, hence, the number of events in the catalog.
This invariance is �again� drastically at odds with the null
model where the temporal rate �=abRD determines the tran-
sition point and � itself depends on the number of events N
as shown in Eqs. �25� and �27�.

As described in what follows, the analysis for the shuffled
catalog shown in Fig. 12 is consistent with the acausal null
model. As predicted by the null model, the distributions for

FIG. 10. �Color online� Panels �a�–�c� degree correlations be-
tween event-0 and its recurrences. The average in-degree �knn

in � or
out-degree �knn

out� of the recurrences of all nodes with a given in-
degree kin or out-degree kout for m=2.5 is shown. Open �black�
circles correspond to the original earthquake catalog from Califor-
nia, filled �blue� diamonds correspond to the shuffled catalog. The
mean degree is indicated by the �red� solid line and the �orange�
dashed line, respectively. Panel �d� shows the average out-degree of
a node as a function of its in-degree. Open �green� circles corre-
spond to the original earthquake catalog from California, filled
�blue� diamonds correspond to the shuffled catalog. The black dash-
dotted line is the approximation for the null model given in Eq.
�52�. In this panel, the behavior of the original earthquake data is
qualitatively very different from the null model and the shuffled
catalog.

FIG. 11. �Color online� Distributions of the waiting times be-
tween event-0s and their recurrences for the original catalog and
different threshold magnitudes m. The distribution for m=2.5 up to
1988 is also shown. Filled symbols correspond to times below 90 s
which are underestimated and unreliable due to measurement re-
strictions: The finite rupture times of earthquakes and the associated
seismic coda, which consists of a superposition of incoherent scat-
tered waves, place limitations on the identification and separation of
earthquakes. The inset shows the rescaled distributions. Note that
	0


pm�t�dt=1.
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the shuffled catalog must be rescaled by the rate of events in
order to obtain a data collapse. Furthermore, the invariant
behavior �with respect to magnitude m� we observe for re-
currences in the original catalog differs substantially from
earlier results for waiting time distributions between subse-
quent earthquakes �36–39�. It reflects a nontrivial feature of
the spatiotemporal dynamics of seismicity that appears when
events other than the immediately subsequent ones—used to
conventionally define waiting times—are considered.

For the shuffled catalog, pm�t� closely follows the theoret-
ical prediction of Eq. �23� and in particular the dependence
on m—or rather on N through �. As shown in the inset of
Fig. 12, the different distributions—with the obvious excep-
tion of the observational cutoff at the largest time scales—
collapse onto a single curve if t is rescaled by the respective
rate �m. Here, �m is the mean rate of earthquakes above
magnitude threshold m for the observation period. Notably,
the main deviation from the stationary null model is that the
location of the transition point for the shuffled catalog is not
at �mt=1 but rather at �mt=0.02. This is expected and due
to the fact that the rate of seismic activity—which is pre-
served in the shuffled catalog—is not constant over time but
exhibits large, correlated fluctuations as indicated, for ex-
ample, by Omori’s law �46�.

The relative times between subsequent recurrences in the
hierarchy can be analyzed in the same way as distances were
in Sec. IV A 4. Figure 13 shows the PDFs for the ratios
ti / ti+1 for subsequent recurrences, i.e., recurrences are or-
dered such that recurrence i+1 directly follows recurrence i.
For the cases shown, two power-law regimes seem to exist:
For arguments smaller than about 10−3, qi

2.5�ti / ti+1� decays
with an exponent �t�0.6 roughly independent of i, for larger
arguments the decay is slower and the exponent apparently

decreases further with i. Clearly, the broadest scaling regime
materializes for t1 / t2.

The behavior of q1
2.5�t1 / t2� for 10−3� t1 / t2�1 could be

compared to Eq. �38�, although the latter was derived for the
translational invariant case. Equally important, Eq. �38� only
holds for the stationary null model. As discussed above, seis-
mic activity is not constant over time but exhibits large fluc-
tuations. Figure 13 shows that these fluctuations as well as
the loss of translational invariance are responsible for the
behavior for arguments larger than about 10−3, since there is
no observed difference between the original and the shuffled
catalog. Yet, the deviations between the original data and the
shuffled catalog for smaller arguments indicate that those
short time differences arise from the causal spatiotemporal
organization of seismicity.

D. Discussion

It is important to discuss our results for the network of
recurrences �or records� in view of what is known about
causal connections between earthquakes. One specific type
of causal connection is earthquake triggering. The increased
seismic activity following large earthquakes—as described
by the Omori law �46� leading to the identification of
aftershocks—is the most obvious example of earthquakes be-
ing triggered in part by preceding events. Aftershock se-
quences of small earthquakes are less obvious because the
aftershock productivity is weaker, but can be observed after
stacking many sequences �55�. Other approaches �16,25�
have generalized the definition of an aftershock so that an
event can be an aftershock of more than one event leading to
networks of earthquakes and aftershocks. Earthquake trigger-
ing is typically associated with stress changes which can be
static stress changes imparted by the preceding shock or dy-
namic stress changes associated with seismic wave propaga-
tion or combinations of them as discussed, for example, in
Refs. �56–60�. The proposed physical mechanisms to explain

FIG. 12. �Color online� Distributions of the waiting times be-
tween event-0s and their recurrences in the shuffled catalog �see
text� for different threshold magnitudes m. Filled symbols corre-
spond to times below 90 s which are underestimated and unreliable.
The inset shows the distributions rescaled by the respective rate of
events �m. The solid line corresponds to a best fit assuming the
functional form given in Eq. �23�. The dashed line highlights the
transition point between the constant behavior and the 1 / t decay.
Note that 	0


pm�t�dt=1.

FIG. 13. �Color online� Distribution of waiting time ratios ti / ti+1

for m=2.5. The straight line has slope �0.62. Open symbols corre-
spond to the original earthquake catalog, filled symbols to the
shuffled catalog �see text�. Note that 	0


qi
m�x�dx=1.
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earthquake triggering due to static stress change induced by
a prior event include rate-and-state dependent friction �61�,
crack growth �62–64�, viscous relaxation �65�, static fatigue
�66�, pore fluid flow �67�, and simple sandpile models �68�.

Calculations of stress changes have been used to predict
the locations, focal mechanisms and times of future earth-
quakes �see Refs �56,57,69�. for reviews�. The success of this
method is limited. Only about 60% of aftershocks are located
where the stress increased after a main shock �70�; stress
shadows are seldom or never observed �71,72�; and the cor-
relation of stress change with aftershocks is rather sensitive
to the assumed slip distribution �73�. All of this could be due
to the fact that most studies have neglected the influence of
small earthquakes and secondary aftershocks which can play
an important role �74,55�. Moreover, most studies have also
neglected the influence of dynamic stresses radiated by seis-
mic waves from �small or medium-sized� earthquakes which
may also play an important role—even in the near field �see,
e.g., Refs. �75–80�.�. In particular, dynamic stress changes
can dominate the triggering mechanism over a wide range of
distances between 0.2 and 50 km from the fault rupture �81�.

While it is not entirely clear how our results for the net-
work of recurrences could allow one to distinguish between
the different types of stress changes associated with earth-
quake triggering, there are a number of currently unex-
plained observations that could be related to a particular trig-
gering mechanism. The excess of events with a large number
of recurrences compared to the null model �see Fig. 8� is one
of them. Other examples include the correlations between the
in-degree and the out-degree of a given event �see Fig. 10�d��
and the apparent invariance of the waiting time distribution
with respect to the threshold magnitude �see Fig. 11�. The
sensitivity of these properties as well as our other findings
�especially the invariance of l��m� with respect to the time
span� to the triggering mechanism can be tested within the
framework of the “epidemic type aftershock sequence”
model which has been established as an improved stochastic
null model for seismicity �82,83�. It allows one to vary the
spatial scaling of the triggered events depending on the as-
sumed underlying triggering mechanism, namely, static
stress changes or dynamic stress changes �84,81�. This will
be the topic of a future publication.

Finally, we would like to point out that simple and direct
comparisons of our results for the network of recurrences �or
records� with known results for aftershocks are not justified.
This is due to the fact that recurrences as defined by our
method are at best a very small and nonrandom subset of
what typically would be considered the set of aftershocks.
Also, the power-law decay of the distribution of distances as
shown in Fig. 5 occurs generically for a wide class of pro-
cesses due to the properties of records as discussed in Sec.
III—independent of the specific properties of aftershock se-
quences described, for example, in Ref. �81�. Similarly, the
power-law decay of the distribution of waiting times �see
Fig. 11� is also a generic property of records as discussed in
Sec. III and is, thus, not related to the specific characteristics
of aftershock sequences discussed in Refs. �85,86�.

V. SUMMARY

This paper provides a method to detect features in a tem-
poral sequence of observations that can be plausibly attrib-
uted to causal dynamics even when the observer has no a
priori knowledge of the underlying dynamics. Our starting
point is to generalize the concept of a recurrence for a point
process in time to recurrent events in space and time. An
event is defined to be a recurrence of any previous event if it
is closer to it in space than all the intervening events; i.e., if
it constitutes a record breaking event. Hence, the causal
structure of events may be described as a network of events
linked to their recurrences. Each event can have many pre-
vious events pointing to it �its potential causes� and many
future events �its effects�. Causality can be plausibly inferred
when the statistical properties of the network constructed us-
ing this method and the statistics of the records deviate
strongly from those resulting from almost any acausal pro-
cess.

We derive analytically many properties for the network of
recurrent events composed by random processes in space and
time. In doing so, we develop a fully symmetric theory of
records where both the variable in which records occur and
time, itself, are continuous. This simplifies the theory and in
our view makes it more elegant. We discover a number of
analytic results for record breaking statistics.

Many of those results are compared to properties of the
network synthesized from time series of epicenter locations
for earthquakes in Southern California. Significant disparities
that can be attributed to causality are mainly coming from
the invariance of network statistics with the time span of the
events considered. This is presumably related to an observed
hierarchy in the distances and times of subsequent recur-
rences. As a result a fundamental length scale for recurrences
is obtained solely from the earthquake epicenter data, which
can be identified as the rupture length. All these significant
deviations disappear when the analysis is repeated for a sur-
rogate in which the original magnitudes and locations of
earthquake epicenters are randomly “shuffled.” Almost all of
the latter results are completely consistent with predictions
from the acausal null model. Taken together these results
suggest that causality in seismic dynamics may be much
broader than any normative interpretation of “triggering.”

Our results are generally robust with respect to modifica-
tions of the rules used to construct the network, e.g., using
spatial neighborhoods such that the construction becomes
symmetric under time reversal or taking into account magni-
tudes. All such modifications have the drawback that they do
not define a record breaking process consisting of recur-
rences to each event. For seismicity, our results are also un-
altered if we exclude unphysical links with propagation ve-
locities larger than the velocity of a “P wave” of about
6 km /s ��0.1% of all links�. This is also true if we restrict
ourselves to velocities smaller than the velocity of a shear
wave of about 3.5 km /s which is often thought to be more
relevant.

By building certain specific features of causality into null
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models, it is possible to refine predictions and examine what
features in the network of seismicity are due to those aspects
of causality and what are yet to be explained. It remains to be
seen how general our method may turn out to be. In principle
it can be applied to any high-resolution data set where events
occur in space and time. Immediate applications may include
analyses of other geophysical or astrophysical data sets,

brain scans �87�, or analyses of models to validate or falsify
them.
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